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ABSTRACT

Micromechanics Based Representative Volume Element Modeling of Heterogeneous Cement Paste

Report Title

The current work focuses on evaluation of the effective elastic properties of cementitious materials through a voxel 
based FEA approach. Voxels are generated for a heterogeneous cementitious material (Type-I cement) consisting of 
typical volume fractions of various constituent phases from digital microstructures. The microstructure is modeled as 
a micro-scale representative volume element (RVE) in ABAQUS to generate cubes several tens of microns in 
dimension and subjected to various prescribed deformation modes to generate the effective elastic tensor of the 
material. The RVE-calculated elastic properties such as moduli and Poisson’s ratio are validated through an 
asymptotic expansion homogenization (AEH) and compared with rule of mixtures. Both Periodic (PBC) and 
Kinematic boundary conditions (KBC) are investigated to determine if the elastic properties are invariant due to 
boundary conditions. In addition the method of “Windowing” was used to assess the randomness of the constituents 
and to validate how the isotropic elastic properties were determined. The average elastic properties obtained from the 
displacement based FEA of various locally anisotropic micro-size cubes extracted from an RVE of size 100x100x100 
microns showed that the overall RVE response was fully isotropic. The effects of domain size, degree of hydration, 
kinematic and periodic boundary conditions, domain sampling techniques, local anisotropy, particle size distribution 
(PSD), and random microstructure on elastic properties are studied.
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Introduction 
 

Abstract 
 

b 

Multi-Scale Modeling of Cementitious Materials                         

Methodology 
 The representative volume element (RVE) is the smallest volume of 

material that captures global characteristics of the material and shows the 

same overall material properties irrespective of the boundary conditions 

applied. 

 Software package CEMHYD3D V.3 (NIST), simulates the hydration 

process and formation of the digitally generated micro-structure for a 

typical Type-I general purpose cement. 

 Initial 3D microstructure is created  based on measured geometrical 

particle size distribution (PSD) as well as volume fractions and surface–

area fractions of the constituent phases for cement powder, extracted from 

2D composite images of cement at various degrees of hydration (DOH). 

 The RVE-calculated elastic properties such as moduli and Poisson’s ratio 

are validated through an asymptotic expansion homogenization (AEH) 

and compared with rule of mixtures. 

 Windowing is employed to investigate how anisotropy due to local 

microstructure leads to overall isotropic behavior of the agglomerate. 

Windows are analogous to physical core samples prepared by extraction 

from a hydrated bulk specimen.  
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AEH 

Microstructure Based Homogenization 
 

Rule of Mixtures Based Homogenization  
 A rule of mixtures approach independent of the microstructure of the material is used 

to compute the effective bulk properties of the cementitious material.  

 The theoretical extreme upper and lower bounds on effective material properties of 

multi-phase materials are the Voigt (1928) and Reuss (1929) bounds. 

 

 

 Hashin(1962) presented the composite (or coated) spheres model for determining the 

effective material properties for multi-phase materials, based on the dilute suspension 

model. 

 

 

 For Hashin and Voigt estimates, the bulk modulus (K) is found to be lower compared 

to the values computed based on the microstructure (KBC, PBC and AEH). Both the 

Young’s Modulus (E) and shear modulus (G) are determined to be higher than those 

estimated by microstructure based  homogenization. 

 

Conclusion 
 A comparison between the two domain sampling methods shows that windowing produces 

effective material properties with a larger variation than the PMD due to a higher variation 

in local phase volume fractions.  

 Macroscopic properties obtained for various DOH and domain sizes, determined by 

applying Kinematic Boundary Conditions (KBC), Periodic Boundary Conditions (PBC), 

AEH and rule of mixtures based homogenization are found to be comparable.   

 It is shown that even though cement is a heterogeneous anisotropic material at the micro-

level, the bulk properties are effectively isotropic.  

 

 Effective elastic properties of cementitious materials are evaluated 

through a voxel based FEA approach.  

 A methodology has been developed for computing the elastic properties 

of heterogeneous C-S-H (calcium oxide- silicate oxide- hydroxide) based 

multi-phase cementitious materials. 

 The primary focus is to predict homogenized properties at macro-levels 

using micro mechanics based models.  

 Focus is on the determination of elastic properties for hydrated cement 

paste from un-hydrated constituents when small strain quasi-static loading 

conditions are applied to micro-scale. 
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 Subject to PBC, exact estimate of the effective homogeneous elastic properties can be obtained  

for linear elastic inhomogeneous microstructures that exhibit perfectly-periodic homogeneity by  

solving for        in: 

 

 Vector yi signifies the coordinates of the microstructure RVE, and Dijkl is the elastic stiffness  

tensor at a point 𝐲 in the material.  The homogenized linear elastic stiffness tensor, 𝑫𝒊𝒋𝒎𝒏
hom  is given: 
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